Compactification of pointed 1-movable spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nagata Compactification for Algebraic Spaces

We prove the Nagata compactification theorem for any separated map of finite type between quasi-compact and quasi-separated algebraic spaces, generalizing earlier results of Raoult. Along the way we also prove (and use) absolute noetherian approximation for such algebraic spaces, generalizing earlier results in the case of schemes. To the memory of Masayoshi Nagata

متن کامل

Moduli spaces of weighted pointed stable curves

It has long been understood that a moduli space may admit a plethora of different compactifications, each corresponding to a choice of combinatorial data. Two outstanding examples are the toroidal compactifications of quotients of bounded symmetric domains [AMRT] and the theory of variation of geometric invariant theory (GIT) quotients [BP] [DH] [Th]. However, in both of these situations a modu...

متن کامل

Compactification of -spaces Revisited Compactiication of G{spaces Revisited

We discuss compactiications of G{spaces from a new point of view that completely diiers from our earlier approaches. From a topologist's point of view, this new approach is more natural than the previous ones. In addition, it enables a uniied discussion of the compactiication and the linearization problem for G{spaces (which we shall discuss in a subsequent report). The central idea is to get a...

متن کامل

Causal Compactification and Hardy Spaces for Spaces of Hermitian Type

Let G/H be a compactly causal symmetric space with causal compactification Φ : G/H → Š1, where Š1 is the BergmanŠilov boundary of a tube type domain G1/K1. The Hardy space H2(C) of G/H is the space of holomorphic functions on a domain Ξ(C) ⊂ GC/HC with L-boundary values on G/H. We extend Φ to imbed Ξ(C) into G1/K1, such that Ξ(C) = {z ∈ G1/K1 | ψm(z) = 0}, with ψm explicitly known. We use this ...

متن کامل

The Stone-Čech compactification of Tychonoff spaces

A topological space X is said to be completely regular if whenever F is a nonempty closed set and x ∈ X \F , there is a continuous function f : X → [0, 1] such that f(x) = 0 and f(F ) = {1}. A completely regular space need not be Hausdorff. For example, ifX is any set with more than one point, then the trivial topology, in which the only closed sets are ∅ and X, is vacuously completely regular,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1983

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-117-2-95-101